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Ultrashort free-electron laser pulse
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Three-dimensional characteristics of short free-electron laser pulses are analyzed. When the optical pulse
length is short, the growth rate and optical guiding will vary among the Fourier components comprising the
pulse. Matched beam solutions of the wave equation, including diffraction and nonparaxial effects, are dis-
cussed. In certain limits a front to back asymmetry developsalong the pulse as well as a frequency spread
acrossit. In these limits the asymmetry and the frequency spread are relatively small unless the number of
optical cycles in the pulse approaches unity.

PACS number~s!: 41.60.Cr
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I. INTRODUCTION

Development of intense, short-pulse lasers@1,2# is making
new applications possible. For example, the breaking
formation of chemical bonds occur on pico- to femtoseco
time scales. Time resolved spectroscopic observation
these processes requires short-pulsed lasers. The energ
sorption efficiency of a dielectric slab is pulse length dep
dent@3#. For lasing wavelengths in the vicinity of the visib
region these applications imply relatively few optical cycl
per pulse. There is even interest in subcycle laser pu
@4,5#. Ultrashort pulse generation and propagation is also
evant in other applications, such as plasma diagnostics@6#.
Currently the drive toward shorter pulses is mostly confin
to conventional lasers.

Since the early 1980s a number of analyses and exp
ments have been performed to study and characterize
electron lasers~FELs! in the gain guiding regime of opera
tion where the effects of diffraction are important@7–13#.
Notably, several studies pointed out the existence of matc
beam operation of an FEL wherein the spot size and w
front curvature of an infinitely long optical beam rema
fixed as a result of the gain process. Many short wavelen
FELs require matched beams to operate. To date the ef
of finite radiation pulse length on matched beam operatio
an FEL have not been addressed. This paper presen
analysis of the propagation characteristics of an ultras
pulse FEL in the exponential, gain-guiding regime of ope
tion.

In the absence of a waveguide, diffraction of light c
play an important role in the operation of an FEL. A meas
of diffraction is provided by the Rayleigh rangeZR

5pr s
2/l0 , wherer s is the waist~minimum spot size! of the

optical beam andl0 is the free-space wavelength. Diffrac
tion can change the relative overlap of the electron and
tical beams, as measured by the filling factorf 5(r b /r s)

2,
where r b is the electron beam radius, and thus modify t
growth rate. Observe that the Rayleigh range and hence
fraction depend on the wavelength.

A finite-duration pulse implies a spread around the car
frequencyv0 and wave numberk052p/l0 . A spread in
wave numberudku;1/L accompanies a pulse of lengthL. In
PRE 611063-651X/2000/61~5!/5779~5!/$15.00
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this paper finite-pulse solutions for an FEL operating in t
exponential regime are found that are generalizations of
infinite-pulse case. A notable characteristic of the new so
tions is that in the matched regime the optical pulse is
superposition of Fourier components with nearly the sa
Rayleigh rangepr s

2/l, where l is any wavelength in the
spectrum. As a result of this, in certain limits the origin
frequency spread on the pulse is manifested as a frequ
spread across the pulse.

Short optical pulses are critical in laser wakefield acc
erators@14,15#. Short pulses have also been studied in FE
particularly in the context of superradiance@16–19#, ignor-
ing diffraction.

II. FORMULATION

To analyze the propagation of a short optical pulse in
FEL amplifier one can make use of the fluid equations alo
with the wave equation. Maxwell’s equations can be writt
as

S ¹22
1

c2

]

]t2Da'5S' , ~1a!

¹2f5kp0
2 S n

n0
21D , ~1b!

where the source term is expressible as

S'5kp0
2 n

n0
b'1

1

c

]

]t
“'f. ~1c!

Here,A(r ,t) andF(r ,t) are the vector and scalar potentia
respectively, (a,f)5ueu(A,F)/mc2 define the normalized
potentials, the Coulomb gauge“•A50 is assumed,kp0
5(4pn0ueu2/mc2)1/2 is the plasma wave number evaluat
with the equilibrium electron beam densityn0(r ), e and m
are the electronic charge and mass, respectively,c is the
speed of lightin vacuo, and the suffix' denotes the trans
verse component. The lowest order normalized transve
fluid velocity is given byb'5v' /c5a' /g, while the fluid
densityn(r ,t), normalized velocityb(r ,t), and relativistic
5779 ©2000 The American Physical Society
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factorg(r ,t) are assumed to satisfy the relativistic cold flu
equations. These can be combined to obtain an equation
the density

]2n

]t2 2c2
“•H b“•S nb

n0
1

n

n0
~b•“ !bD

1
n

n0g F ~12bb!•S 1

c

]a

]t
1“f D2b3~“3a!G J

50. ~1d!

In principle the appropriate description for the electron m
tion is provided by the Vlasov equation. The analysis in t
paper is limited to the cold fluid equations, neglecting t
spread in electron velocities.

Taking a planar wiggler polarized in thex direction, the
vector potential may be written as the sum of the wiggler a
optical contributions,a5(ax1aw,x)ex , where the suffixw
refers the wiggler andex is a unit vector along thex axis.
Perturbing about an assumed equilibrium state, avera
over the wiggler period, and neglecting harmonics, Eq.~1!
reduces to the following pair for the perturbed densitydn
and the optical vector potential:

d2

dt2
dn

n0
1

c2kp0
2

g0
~12bz0

2 !
dn

n0

5
c

g0
2

]

]z S c
]

]z
1bz0

]

]t D ~aw,xax!, ~2a!

S ¹22
1

c

]2

]t22
kp0

2

g0
Dax5kp0

2 dn

n0

aw,x

g0
[S, ~2b!

where the total time derivatived/dt5]/]t1cbz0]/]z is
evaluated with the equilibrium axial velocitybz0 . In writing
Eq. ~2a! the transverse variation in the electron variables
neglected.

Next, the optical and wiggler vector potentials are writt
as ax5@a(r ,t)/2#exp(ik0 z2iv0t)1c.c., aw,x5aw cos(kw z),
where a(r ,t) is a slowly varying amplitude,k0 and v0
52pc/l0 are the carrier wave number and angular f
quency, respectively,l0 is the free-space wavelength,kw
52p/lw andlw is the wiggler period. Making use of thes
and effecting a change of variables to the group veloc
frame (t,z)→(z,z), with z5z2cbgt, Eq. ~2b! takes the
form

F¹'
2 12S ik01

]

]z D ]

]zGa
52@Sexp~2 ik0z1 iv0t !#slow1

kp0
2

g0
a2k0

2~bp
221!a

22ik0~12bpbg!
]a

]z
2~12bg

2!
]2a

]z22
]2a

]z2 , ~3!

wherecbg is the group velocity,cbp5v0 /k0 is the phase
velocity, and the suffix slow indicates that the slowly varyi
part of the quantity is to be retained.
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Most analyses of FELs neglect the]/]z derivative on the
left-hand side~LHS! of Eq. ~3! since u]/]zu;1/L→0 for a
long pulse. This derivative must be retained for short opti
pulses. The operator on the LHS of Eq.~3! is thus not of the
usual paraxial form; it can, however, be transformed into o
by a simple means@14#. The dependence ofa on the laser
pulse frame variablez is expanded in a Fourier integral,

a~r ,z,z!5E
2`

` dz

A2p
adk~r ,z!exp~ idkz!, ~4!

where Eq.~3! becomes

S ¹'
2 12ik

]

]zDadk[Fdk~r ,z!, ~5a!

and where

Fdk~r ,z!52E
2`

` dz

A2p
exp~2 idkz!@Sexp~2 ik0z

1 iv0t !#slow1
kp0

2

g0
adk2k0

2~bp
221!adk

12k0dk~12bpbg!adk1~12bg
2!dk2adk

~5b!

andk5k01dk.
The operator on the left-hand side of Eq.~5a! is now in

the standard paraxial form. To solve it, the source-depend
expansion ~SDE! method, with Laguerre-Gaussian bas
functions, is employed@10#. Specifically, the vector potentia
is written as

adk~r ,z!5 (
m50

`

adk
~m!~z!Ddk

~m!~r ,z!, ~6a!

where

Ddk
~m!~r ,z!5LmF 2r 2

r s,dk
2 ~z!Gexp$2@12 iadk~z!#r 2/r s,dk

2 ~z!%,

~6b!

Lm is the Laguerre polynomial of orderm, and r s,dk is the
spot size, andadk is proportional to the wave front curvature
both of which are, in general, functions of the propagat
distancez. Consistent with these, the perturbed density
expanded as follows:

dn

n0
5

1

2 F E ddk

A2p
exp~ idk!( dñdk

~m!Ddk
~m!G

3exp@ i ~k01kw!z2v0t#1c.c., ~6c!

wheredñdk
(m) represents the relative density amplitude.

The virtue of the SDE technique is that the fundamen
amplitudeadk

(m50) is dominant, i.e.,uadk
(m50)u@uadk

(m.0)u. As-
suming this, one obtains
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F ]

]z
1

2i ~12 iadk!

krs,dk
2 Gadk

~0!52 i @Fdk
~0!1Fdk

~1!#, ~7a!

]r s,dk

]z
22

adk

krs,dk
52r s,dk ImFFdk

~1!

adk
~0! G , ~7b!

]adk

]z
22

~11adk
2 !

krs,dk
2 52H ReFFdk

~1!

adk
~0! G2adk ImFFdk

~1!

adk
~0! G J ,

~7c!

Fdk
~m!5

1

2k E0

`

dxFdk~x,z!@Ddk
~m!~x,z!#* , ~7d!

wherex52r 2/r s,dk
2 .

To obtain the final set of equations the discussion is l
ited to the case of an FEL amplifier in the exponential regi
of operation. That is, it is assumed that

@adk
~0! ,dñdk

~0!#5~b,dñ!exp@ iudk~z!#, ~8!

where udk(z) is a complex-valued quantity expressing t
entirez dependence of the functions. Making use of this,
perturbed density is given by

S D22
kp0

2

g0gz0
2 D dñ5

aw~k01kw!2

2bz0
2 g0

2 S 12
k0bz0bp

k01kw
Db,

~9a!

where

D5
dudk

dz
1k~12bp /bz01kw /k0!1~12bg /bz0!,

~9b!

and gz051/(12bz0
2 )1/2. Making use of Eq.~9a!, Eq. ~5b!

may be rewritten as

Fdk~r ,z!/@adk
~0!Ddk

~0!#5F kp0
2 aw

2 ~k01kw!2

4g0
3bz0

2 ~D22kp0
2 /g0gz0

2 !

1
kp0

2

g0
2~bp

221!k0
21~12bg

2!dk2

12k0dk~12bpbg!G . ~9c!

Equation~9c! may be used to perform the integration in E
~7d! and hence evaluate the right-hand sides of Eqs.~7a!–
~7c!.

III. MATCHED PULSE SOLUTION

In general Eq.~7! leads to solutions for the spot siz
curvature, andudk(z)5*zdz8@Dkdk(z8)2 iGdk(z8)# that de-
pend on the distancez along the wiggler, whereDkdk and
Gdk are the wave number shift and growth rate, respectiv
Matched solutions for each Fourier component are obtai
by inserting]r s,dk /]z50, ]adk /]z50, andudk(z)5(Dkdk
2 iGdk)z into Eqs.~7a!–~7c!, i.e., the spot size and curvatu
are constants for allz. Since the resulting equations are fun
tions of dk, the matching conditions in general vary fro
-
e

e

.

y.
d

one Fourier component to the next, thus leading to distort
of the pulse shape with propagation distancez.

To proceed the electron density is assumed to be Gaus
in radius,

kp0
2 5 k̂p

2 exp~2r 2/r b
2!, ~10!

where r b is the electron beam radius. Then, for a match
Fourier component Eqs.~7a!–~7c! reduce to

Dkdk52
2

krs,dk
2 1

2~11 f !~12adk
2 !

krs,dk
2

1
1

2k
@~bp

221!k0
222~12bpbg!

3k0dk2~12bg
2!dk2#, ~11a!

Gdk5
2adk~112 f !

krs,dk
2 , ~11b!

adk
2 52

12~11 f !~12adk
2 !2r s,dk

2 U/4

112 f
, ~11c!

krs,dk
2 5

2gz0adk~112 f !2~11adk
2 !

g0kw
2 r bh1/2 , ~11d!

where

h5S k̂p

kw

k01kw

k0

aw

2bz0g0
5/2D 2

~11e!

and

U5F ~bp
221!k0

212S 12
bp

bz0
1

kw

k0
D k0k22~12bpbg!k0dk

12S 12
bg

bz0
D kdk2~12bg

2!dk2G . ~11f!

These equations are valid in the high-gain~exponential!
Compton regime, wherein the collective electron respo
~plasma waves! are neglected, i.e.,kp→0.

In the limit of an infinitely long pulse,dk→0, Eq. ~11!
must go over to previous results@20#. From Eq. ~11a! it
follows thatbp5v0 /(ck0)51, i.e., the phase velocity of th
carrier wave is equal toc. Next, from Eq.~11c! it follows
that

k05
bz0

12bz0
kw , ~12!

which is the usual relationship between the optical and w
gler wave numbers. The functionU in Eq. ~11f! can be made
independent ofdk by choosingbg51. It should, however,
be noted that this is an arbitrary choice. Finally, Eq.~11d!
can be rewritten, leading to the following cubic for the fillin
factor @20#

f 31 f 21~1/423P/2! f 2P50, ~13a!
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where

P5Fk~k01kw!r b
2aw

8gz0bz0
A v

2g0
3G2/3

, ~13b!

andv5( k̂pr b/2)2 is Budker’s parameter. It follows from Eq
~13a! that in the high current or short wavelength limitP can
be large and thenf 'A(3P/2)}k1/3. At the other extreme
where the current is small or the wavelength is longP can be
small and thenf '4P}k2/3. This shows that the filling facto
can be a relatively weak function of the wave numberk in
some limits. Thus, forbg5bp51, only the spot size depend
on dk. In Sec. IV this special case is examined in mo
detail.

IV. EXAMPLE OF MATCHED BEAM

As an example, take the input signal to be a Gaussia
length L, proportional to a0 exp(2z2/L2), where b
5(a0L/&)exp@2(dkL/2)2#. As shown in Sec. III the filling
factor can be a relatively weak function of the wave num
k; then, for bg5bp51 only the spot size depends ondk.
After Fourier inversion the slowly varying optical vector p
tential is given by

a~r ,z,z!'a0 expF iu2
2ir 2

krs
2L2 S z1

ar 2

krs
2 D 2~12 ia !

k0r 2

krs
2

2
1

L2 S z1
ar 2

krs
2 D 2

1S r

Lkrs
2D 2G , ~14!

FIG. 1. Plot of normalized vector potential amplitudeuau as a
function of axial and radial coordinates. Pulse frame axial coo
nate is z/L5(z2ct)/L and radial coordinate isr /@(kL)1/2r s#,
whereL is the optical pulse length. In this plot there is one wav
length in the optical pulse,k0L52p, anda51/2.

FIG. 2. Difference betweenuau and a pure GaussianuaGu
[a0 exp(2z2/L22r2/rs

2), for the same parameters as in Fig. 1. Th
plot shows the deviation of the pulse shape due to finite-pu
length effects.
of

r

where the suffixdk has been omitted.
Noting that the definition of frequency is the negative

the time derivative of the phase, thez dependence of this
function implies that there is frequency shift across the pu
given by

v2v0

v0
52

1

k0L

2r 2

krs
2L

. ~15!

Physically this frequency shift is related to the variation
the spot size with wave number. Observe that the freque
drops with increasing distancer from the axis; this is consis
tent with the fact that longer wavelengths diffract more.

Figure 1 is a surface plot of the pulse in the group veloc
frame for the casek0L52p. If L is taken to be the nomina
pulse length, this corresponds to one optical cycle in
pulse. Admittedly this is an extreme example. Nonetheles
is an example that well illustrates the effects of pulse len
on the standard FEL behavior. To highlight the differen
between this solution and a pure Gaussian pulse, Fig. 2
plot of the difference betweenuau, from Eq. ~14!, and uaGu
[a0 exp(2z2/L22r2/rs

2), neglecting the growth factor, while
Fig. 3 is a plot of the ratio ofuau and uaGu. Figure 2 shows
that atr 50 the pulse is centered atz50. In other words, the
peak of the pulse does indeed move at the speed of li
However, forr .0 the pulse is deformed and a front to ba
asymmetry is observed. The relative frequency shift acr
the pulse is plotted in Fig. 4. A large relative frequency sh
of ;30% is observedacrossthe pulse. It follows from Eq.
~15! that, in terms of the scaled radial variabler /@(kL)1/2r s#,
the frequency shift scales inversely with the pulse leng

i-

-

e

FIG. 3. Ratio ofuau and a pure GaussianuaGu[a0 exp(2z2/L2

2r2/rs
2), for the same parameters as in Fig. 1. This plot shows

finite-pulse length effects are relatively large at the back and on
edge of the pulse.

FIG. 4. Plot of relative frequency shift as a function of norma
ized radial coordinate for the same parameters as in Fig. 1. At
wavelength per pulse there is a large frequency shift~;30%!; the
frequency shift drops to;3% for ten wavelengths per pulse.
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Hence the relative frequency shift drops to a modest;3%
for the case of ten optical wavelengths in the pulse. Note
the percentages quoted here refer to the frequency shif
the point where the scaled radial variable is unity.

V. SUMMARY

When the laser pulse length is short, the gain and he
optical guiding will vary among the Fourier componen
comprising the pulse. Three-dimensional characteristics
short free-electron laser pulses are analyzed, including n
paraxial effects. Matched beam solutions of the wave eq
, A
,

t.

ez

y

at
at

ce

of
n-
a-

tion are discussed. In certain limits a front to back asymm
try forms along the pulse. Additionally a frequency dro
developsacrossthe pulse owing to the larger diffraction ten
dency of longer wavelengths. In these limits the asymme
and the frequency spread are relatively small unless the n
ber of optical cycles in the pulse approaches unity.
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